







# Fine-grained Pixel-level Understanding with VLMs

Wentong Li

https://cslwt.github.io/

2025-10-15

### **Task Definitions**

Fine-grained Spatial Understanding can be reflected in two types of tasks:

#### 1. Referring

Input image + text instruction + Region

Model is required to understand the referred regions and respond to the instruction.



#### Text prompt

Question: Can you describe the pillow that the dog is resting on in [0,300,500,510]?

**Answer:** The pillow is a blue cushion or pillow that is part of the chair...

### Fine-grained visual prompt

**Question:** Can you describe the pillow that the dog is resting on in <region5>?

**Answer:** The pillow in region5 is a blue cushion or pillow that is part of the chair...

### **Task Definitions**

Fine-grained Spatial Understanding can be reflected in two types of tasks:

### 2. Grounding

Output: text response + Region

Model is required to localize the objects in image when mentioning them in response.



#### Text output

**Question:** Who was the president of the US in this image? Please output its box.

**Answer:** The president of the US is [600,150,800,500].

### Fine-grained visual output

**Question:** Who was the president of the US in this image? Please output segmentation mask.

**Answer:** Sure, the segmentation result is [SEG].



### Fine-grained Image-level Region Understanding

### Osprey



SAM "Segment Everything" Predictions

No semantic information

**Object Category:** person

Part Taxonomy: body

Attribute: color, position ...

**Caption:** region short / detailed

description

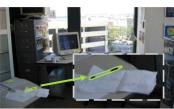
Fine-grained Region/Pixel Understanding



Rich semantic information containing different granularities

- Integrate images, target regions (masks), and textural data;
- Enable fine-grained semantic description of arbitrary regions or objects within images;
- Strong robustness and generalization.

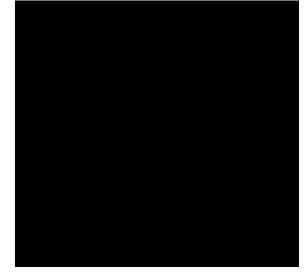








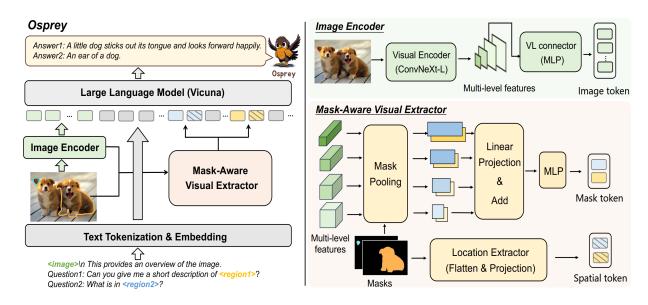
General scene



Out-of-domain Scene

2023.9-2023.11

### Fine-grained Image-level Region Understanding



- Support high-resolution image
  - ConvNeXt (512x512@training, 800x800@inference)
- Pixel-level region feature extraction
  - Mask-Aware visual extractor (multi-level)

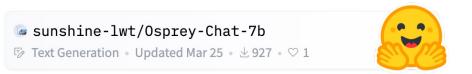






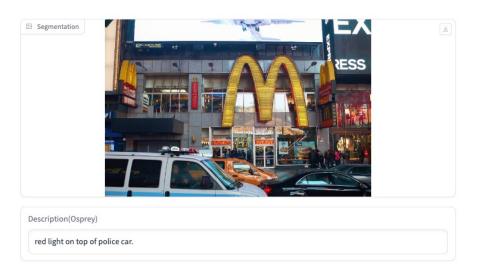
- 720K region-text pairs.
- Six types of object region-text data.

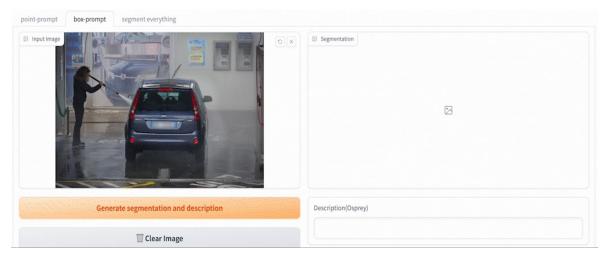
Open-source: <a href="https://huggingface.co/sunshine-lwt">https://huggingface.co/sunshine-lwt</a>



## Fine-grained Image-level Region Understanding

#### Online Demo







**Video Visualization** 

### Fine-grained Region Understanding for Spatial Cognition

Spatial RGPT

Accurate Spatial Understanding & Reasoning on Objects in Image.

- Relative Relation
- Metric Measurement
- Spatial Reasoning





The width of Region [1] is 7.73 feet.



Is Region [1] behind Region [4]?

No, it is in front of Region [4].



Between Region [0] and Region [2], which one has more height?
Region [2] is taller.

- A Relative Relation
- © Can you confirm if 4 has a greater width compared to 6?
- In fact, 4 might be narrower than 6.
- Which of these four, 3, 4, 5, 6 is the tallest?
- 6 is the tallest.
- From the viewer's perspective, is the position of 6 closer than that of 3?
- No, 3 is closer.
- (B) Metric Measurement
- If you are at 3, where will you find 7?
- is at 1 o'clock from 3.
- What is the height of 4?
- 4 is 1.38 meters tall.
- How far apart are 2 and 3 horizontally?
- They are 15.33 meters apart horizontally.



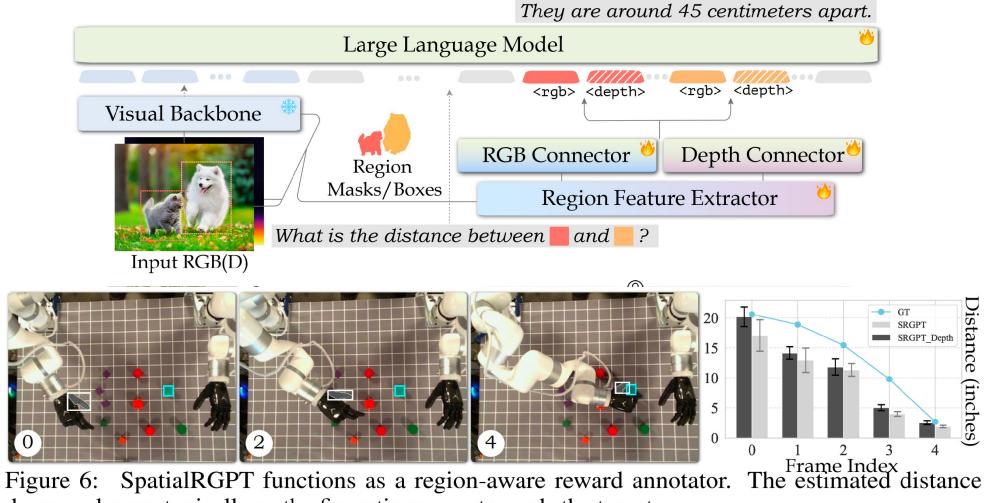
#### C Spatial Reasoning

- Can you try to estimate how many floors are in 1? Think step by step.

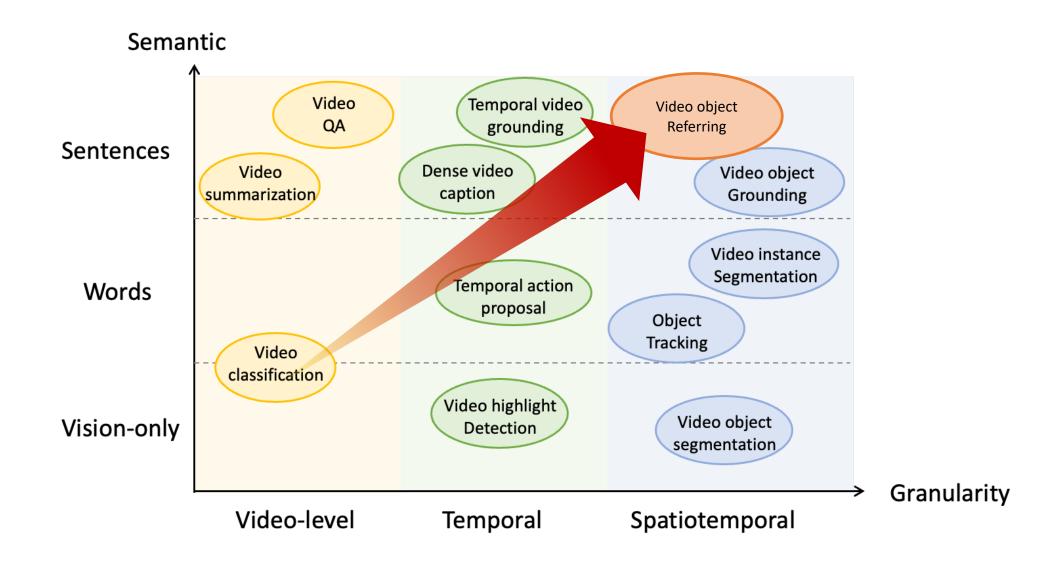
  The height of 1 is 204.54 feet. Assuming each floor is about 10 feet high, the total number of floors would be 20.454. Since you can't have a fraction of a floor, the total number of floors would be approximately 20.
- I'm planning to build a bridge from 2 to 1, is it possible?
  - The distance between ② and ① is 14.82 meters, so it is possible to build a bridge between them.
- If you are riding a motorcycle with 36 inches wide, do you think you can pass through the area between 3 and 4?
- The distance between 3 and 4 is 38.95 inches, so yes, you can pass through the area between 3 and 4 since the motorcycle is narrower than the distance between them.

### Fine-grained Region Understanding for Spatial Cognition

Framework



decreased monotonically as the fingertip moves towards the target.



#### Video Object Referring



A man with a cocked hat and green robes, riding a horse, slowly riding from the left to the right.

#### Video Objects Relationship



The knife <object1>
moves the spring
onions from the
chopping board
<object2> to the pan.

**Future Reasoning** 



Q: What will <object1> probably do next?

A: <object1> will probably have to shoot or pass the ball to a teammate.

Video Object Retrieval



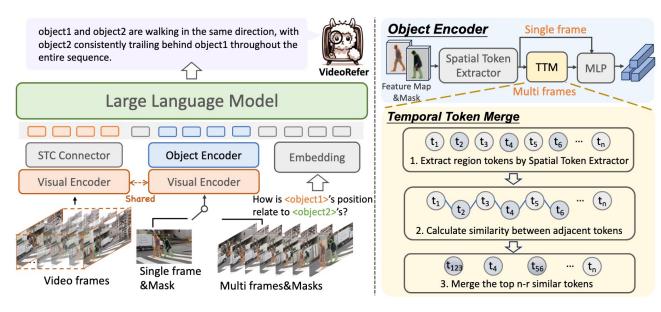
Input image



The man was Trump, who stood in the crowd waving and waving his fist to the left and right.

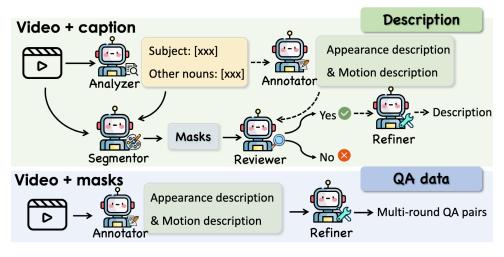
VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025.

#### VideoRefer Suite

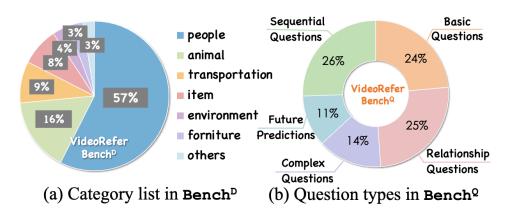


VideoRefer Model

- Spatiotemporal Region-level understanding Architecture;
- Constructing Large-scale Video Region Dataset;
- Evaluation Benchmarks for Video-based Object Understanding.

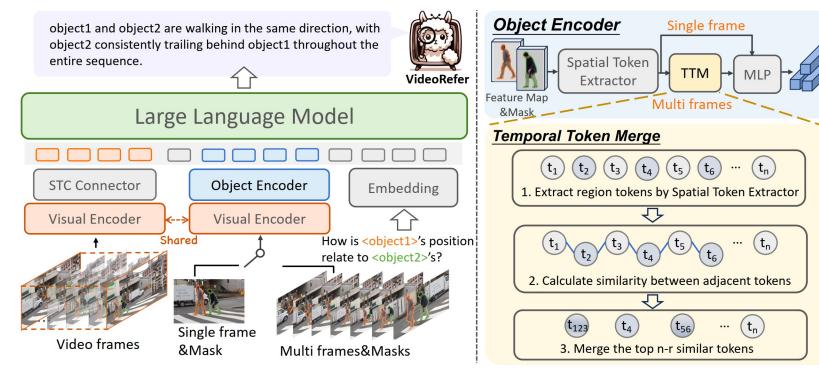


VideoRefer-700K—Multi-agent Data Engine



VideoRefer-Bench

#### VideoRefer Model



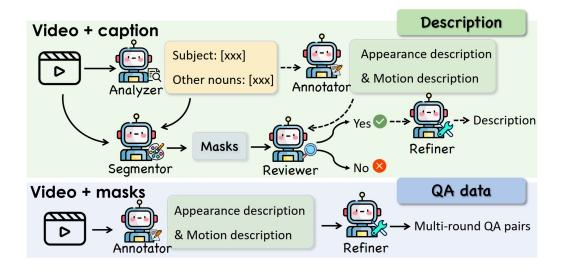
A plug-and-play Spatial-Temporal Object Encoder:

- Spatial Token Extractor (Single-frame)
- Temporal Token Merge Module (*Multi-frame*)
- Free-from input region (Mask)

#### **Optimization Loss:**

$$\mathcal{L} = \sum_{(V, \mathbf{R}, x, y)} \log P(y \mid V, R_1, ..., R_n, x)$$

#### VideoRefer-700K





Step1- Analyzer: Qwen2-Instruct-7B

Step2-Annotator: InternVL2-26B

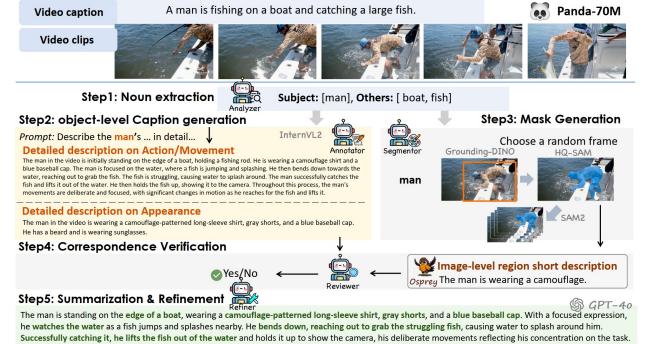
Step3-Segmentor:Grounding DINO&SAM 2

Step4-Reviewer: Osprey&Qwen2-Instruct-7B

Step5-Refiner:GPT-4o

#### Three types:

- Object-level Detailed Caption
- Object-level Short Capton
- Object-level QA



| ,                     | Manually True | <b>Manually False</b> |
|-----------------------|---------------|-----------------------|
| <b>Reviewer True</b>  | 88 (TP)       | 12 (FP)               |
| <b>Reviewer False</b> | 36 (FN)       | 64 (TN)               |

Table 8. Confusion matrix of the randomly sampled 100 items in the Reviewer evaluation.

VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025.

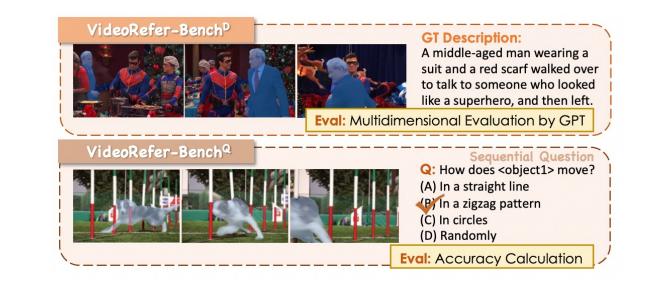
#### VideoRefer-Bench

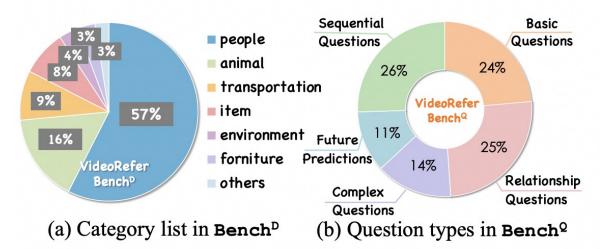
**VideoRefer-Bench**<sup>D</sup> (Descripion Generation) **GPT assign scores from 0 to 5 across:** 

- Subject Correspondence
- Appearance Description
- Temporal Description
- Hallucination Detection

#### **VideoRefer-Bench**<sup>Q</sup> (Multi-choice QA)

- Basic Questions
- Sequential Questions
- Relationship Questions
- Reasoning Questions
- Future Predictions





### Describe Anything Model (DAM)

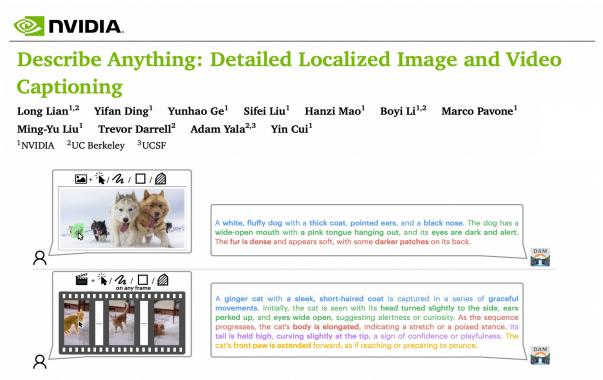
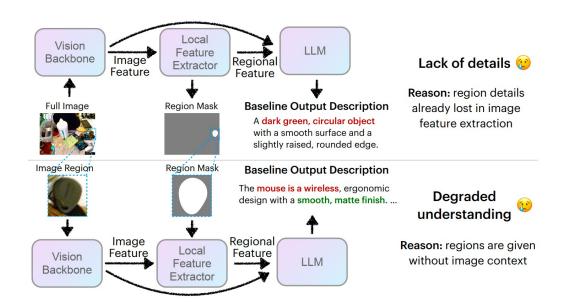


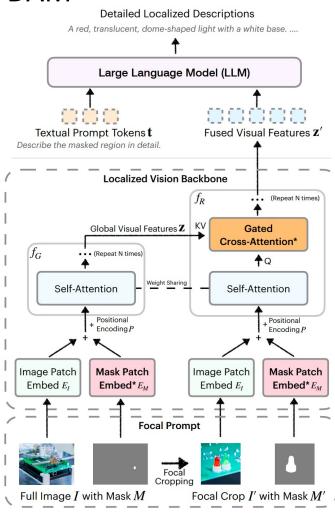
Figure 1: **Describe Anything Model (DAM)** generates **detailed localized captions** for user-specified regions within **images** (top) and **videos** (bottom). DAM accepts various region specifications, including clicks, scribbles, boxes, and masks. For videos, specifying the region in *any frame* suffices.



Typical two regional frameworks

Adopting VideoRefer-Bench & Osprey Evaluation.

#### DAM



Focal Prompt

Full image and a zoomed-in region with corresponding mask

$$x = E_I(I) + E_M(M) + P, \quad z = f_G(x) \ x' = E_I(I') + E_M(M') + P, \quad z' = f_R(x',z)$$

Localized Vision Backbone

Inject global features into the encoding of local regions using

#### **Gated Cross-Attention Adaptor**

$$\mathbf{h}^{(l)'} = \mathbf{h}^{(l)} + \tanh\left(\gamma^{(l)}\right) \cdot \operatorname{CrossAttn}\left(\mathbf{h}^{(l)}, \mathbf{z}\right),$$

$$\mathbf{h}^{(l)}_{\operatorname{Adapter}} = \mathbf{h}^{(l)'} + \tanh\left(\beta^{(l)}\right) \cdot \operatorname{FFN}\left(\mathbf{h}^{(l)'}\right),$$

### Perceive Anything Model (PAM)

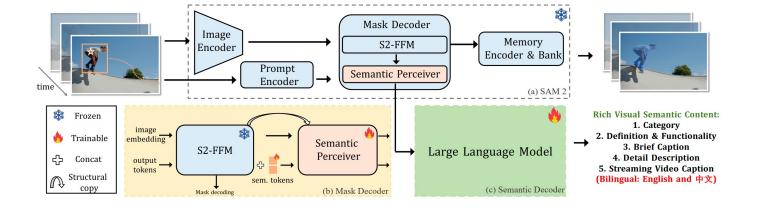
## Perceive Anything: Recognize, Explain, Caption, and Segment Anything in Images and Videos

Weifeng Lin¹\* Xinyu Wei³\* Ruichuan An⁴\* Tianhe Ren²\* Tingwei Chen¹
Renrui Zhang¹ Ziyu Guo¹ Wentao Zhang⁴ Lei Zhang³ Hongsheng Li¹¹

¹CUHK ²HKU ³PolyU ⁴Peking University

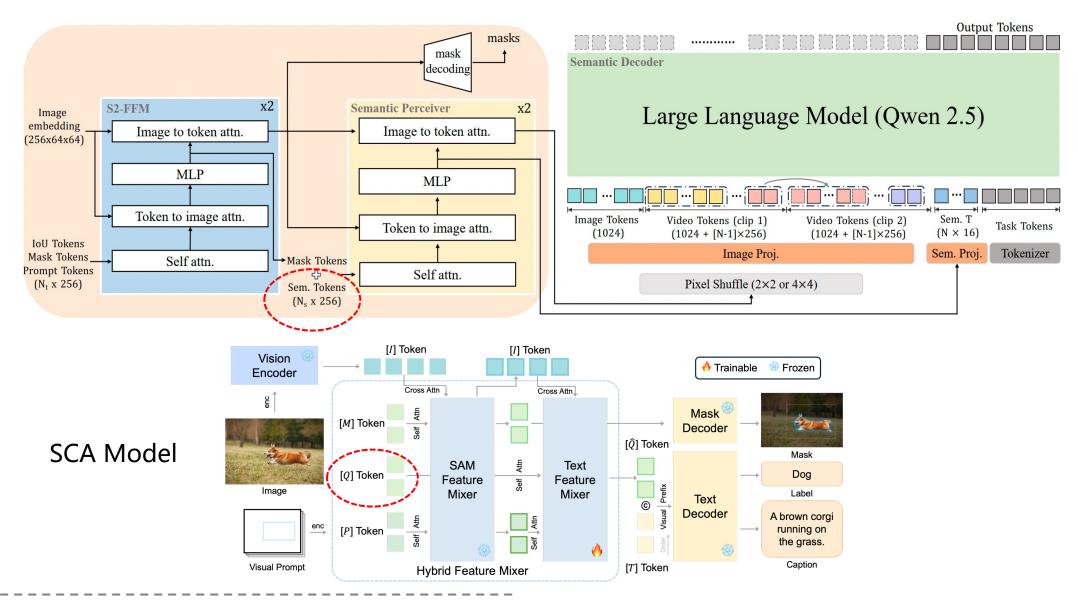
Lahel Atamana ality bader
and the mean and the state of the state of

Figure 1: **Perceive Anything Model (PAM):** PAM accepts various visual prompts (such as clicks, boxes, and masks) to produce region-specific information for images and videos, including masks, category, label definition, contextual function, and detailed captions. The model also handles demanding region-level streaming video captioning.



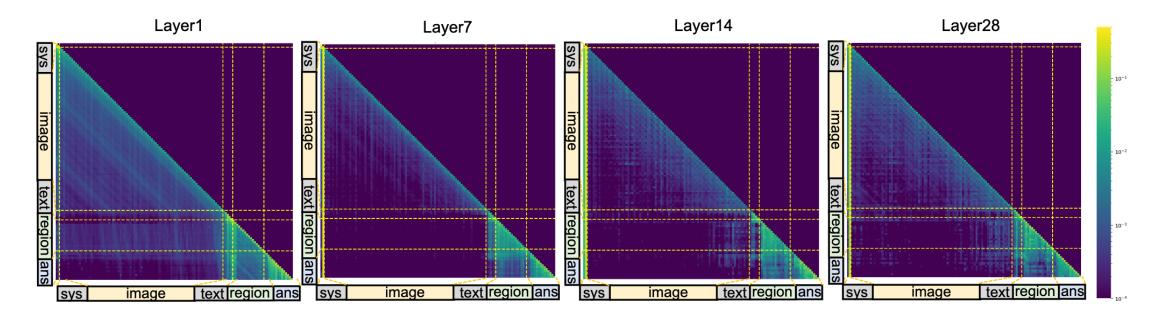
- Extends SAM 2 by extracting its intermediate visual features and transforming them into LLM-compatible tokens.
- Enables segmentation mask decoding and semantic content decoding simultaneously.

CUHK & HK PloyU



Segment and Caption Anything, in CVPR2024.

#### **PixelRefer**



- Answer tokens prioritize object tokens
- The attention between answer and image tokens are sparse
- Early fusion of object and image tokens



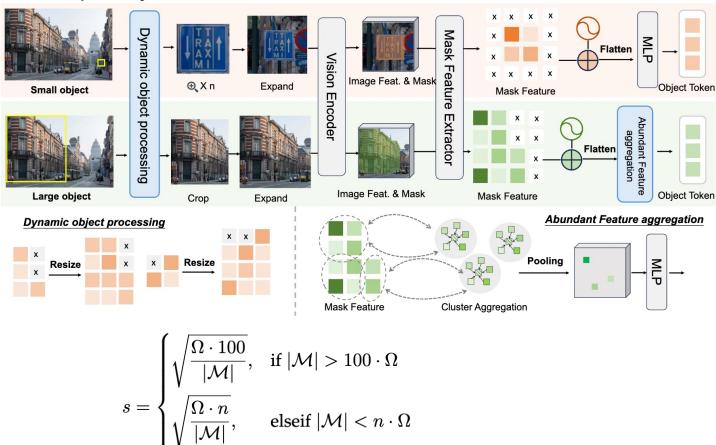
Construct robust region representation



Vision-Object Framework

#### **PixelRefer**

#### **Scale-adaptive Object Tokenizer**





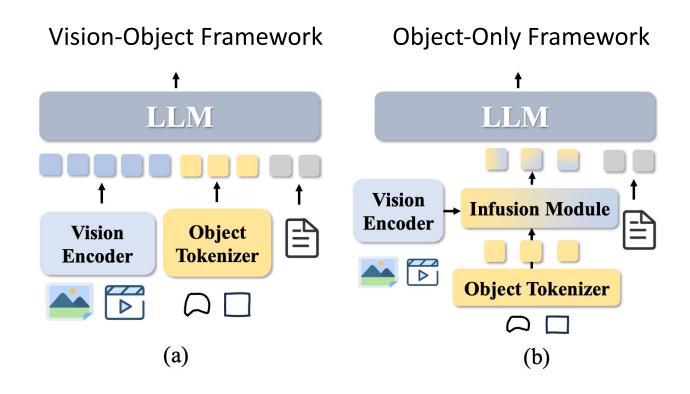
Token similarity



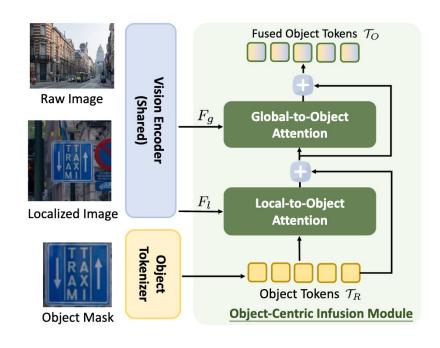
Accurate understanding of extremely small objects.

PixelRefer: A Unified Framework for Spatio-Temporal Referring with Arbitrary Granularity. (Coming soon)

#### **PixelRefer**

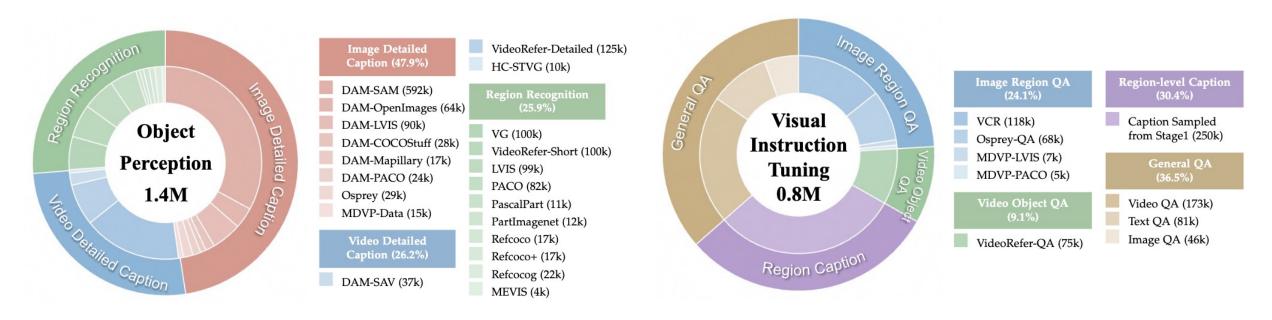


#### Object-Centric Infusion Module



- (a) Within LLM (inside LLM: vision and object tokens are fused)
- (b) Before LLM (token fusion before feeding into LLM)

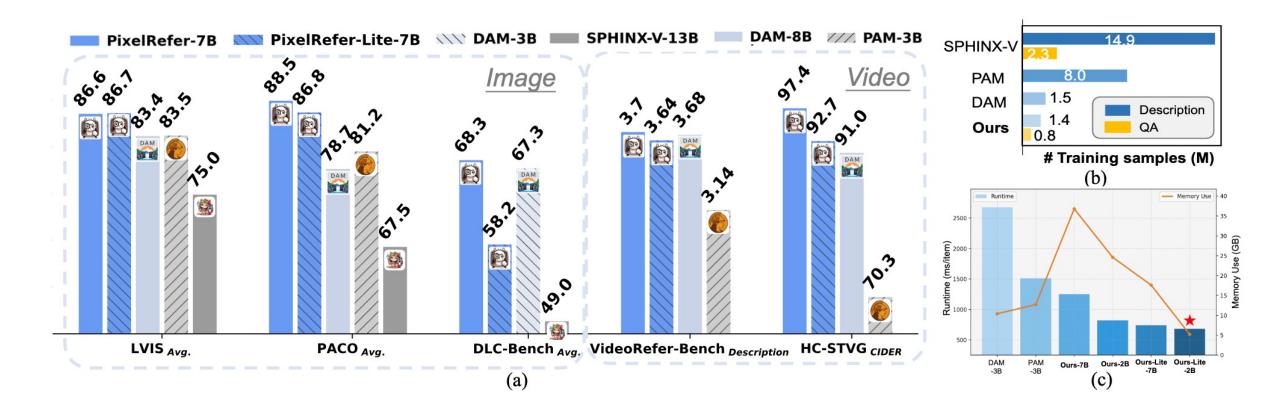
#### **PixelRefer**



| Data                  | #Samples | Image- | Region-Bench |         | General-Bench |              |      |         |
|-----------------------|----------|--------|--------------|---------|---------------|--------------|------|---------|
| <b>–</b>              |          | LVIS   | DLC-Bench    | HC-STVG | VideoRefer-D  | VideoRefer-Q | POPE | MVBench |
| Region Recognition    | 390K     | 89.6   | 61.2         | 11.9    | 2.94          | 72.3         | 87.3 | 60.3    |
| + Image Detailed Cap. | 860K     | 89.7   | 66.4         | 13.0    | 2.97          | 71.9         | 88.2 | 58.7    |
| + Video Detailed Cap. | 180K     | 89.7   | 66.0         | 19.1    | 3.69          | 74.8         | 88.0 | 61.9    |
| + Region QA           | 560K     | 89.7   | 66.6         | 19.6    | 3.62          | 75.8         | 83.9 | 61.6    |
| + General QA          | 300K     | 89.8   | 66.1         | 19.5    | 3.58          | 76.5         | 88.7 | 63.4    |

PixelRefer: A Unified Framework for Spatio-Temporal Referring with Arbitrary Granularity. (Coming soon)

PixelRefer-Lite: Only 32 object tokens for each object without image tokens



#### PixelRefer-Lite: Only 32 object tokens for each object without image tokens

#### **FLOPs and memory consumption**

| Method                                                                     | $\mid \mathbf{L}_{\mathrm{R}}$ | $\mathbf{L}_{\mathrm{Z}}$                                                                                 | $\mathbf{L}_{\mathrm{Z}_{\mathrm{G}}}$ | $\mathbf{L}_{\mathrm{Z_L}}$ | FLOPs(T)                       | Memory                              |
|----------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|--------------------------------|-------------------------------------|
| Image                                                                      |                                |                                                                                                           |                                        |                             |                                |                                     |
| PixelRefer-2B<br>PixelRefer-2B-Lite<br>PixelRefer-7B<br>PixelRefer-7B-Lite | 32<br>32<br>32<br>32<br>32     | $     \begin{array}{c}         \sim 1408 \\         0 \\         \sim 1408 \\         0     \end{array} $ | -<br>576<br>-<br>576                   | 256<br>-<br>256             | 1.51<br>0.03<br>7.08<br>0.17   | 13.2GB<br>4.9GB<br>25.1GB<br>15.8GB |
| Video                                                                      |                                |                                                                                                           |                                        |                             |                                |                                     |
| PixelRefer-2B<br>PixelRefer-2B-Lite<br>PixelRefer-7B<br>PixelRefer-7B-Lite | 32<br>32<br>32<br>32           | $     \begin{array}{c}         \sim 7185 \\         0 \\         \sim 7185 \\         0     \end{array} $ | -<br>576<br>-<br>576                   | 256<br>-<br>256             | 11.15<br>0.11<br>43.83<br>0.61 | 24.6GB<br>5.1GB<br>36.9GB<br>17.6GB |

#### Inference time and memory usage

|                                                           | DLC-B          | ench             | HC-STVG        |                  |  |  |  |
|-----------------------------------------------------------|----------------|------------------|----------------|------------------|--|--|--|
| Model                                                     | Infer Time     | Memory           | Infer time     | Memory           |  |  |  |
| DAM-3B<br>PAM-3B                                          | 1.29s<br>1.09s | 7.8GB<br>9.4GB   | 5.64s<br>1.51s | 10.4GB<br>12.7GB |  |  |  |
| PixelRefer-2B PixelRefer-Lite-2B                          | 1.04s<br>0.88s | 13.2GB<br>4.86GB | 0.82s<br>0.68s | 24.6GB<br>5.2GB  |  |  |  |
| PixelRefer-Lite-2B<br>PixelRefer-7B<br>PixelRefer-Lite-7B | 1.44s<br>1.10s | 25.1GB<br>15.8GB | 1.25s<br>0.74s | 36.9GB<br>17.6GB |  |  |  |

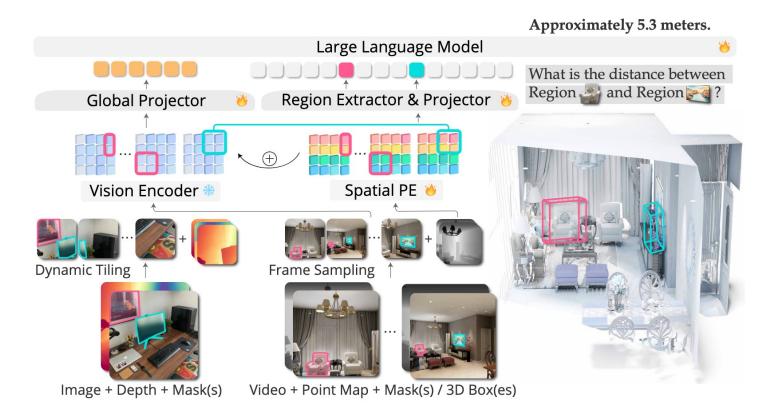
## Fine-grained spatial reasoning





### Fine-grained spatial reasoning

#### **Architecture**

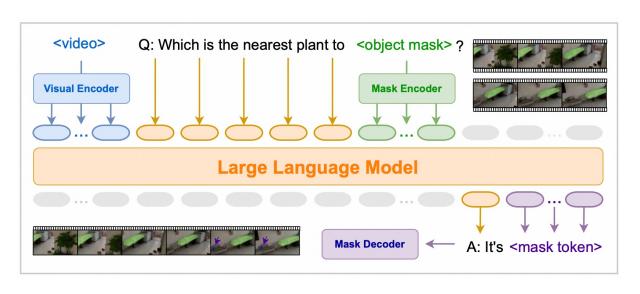


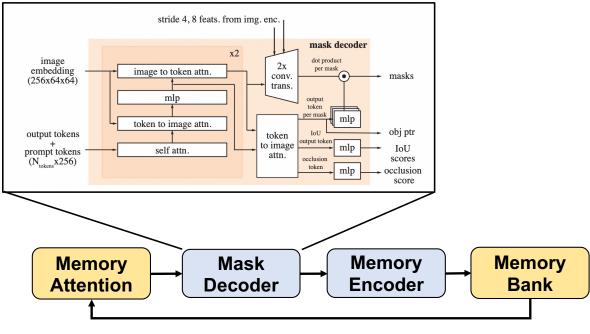
|                             | By.<br>Organ | site<br>on: | क्वेति इंग्रहे<br>क्वे | کوا:<br>ارتخ: | 2g.,          |
|-----------------------------|--------------|-------------|------------------------|---------------|---------------|
|                             | ₹2°2°.       | 00          | 500,                   | Re)           | ₽ <u>ê</u> ). |
| Methods                     |              | Quantitativ | Qualitative            |               |               |
| Random                      |              | _           | -                      | 25.0          | 36.1          |
| Human Level <sup>†</sup>    | 47.0         | 60.4        | 45.9                   | 94.7          | 95.8          |
| Proprietary Models (API)    |              |             |                        |               |               |
| GPT-40 [1]                  | 5.3          | 43.8        | 38.2                   | 37.0          | 41.3          |
| Gemini-1.5 Flash [100]      | 30.8         | 53.5        | 54.4                   | 37.7          | 41.0          |
| Gemini-1.5 Pro [100]        | 30.9         | 64.1        | 43.6                   | 51.3          | 46.3          |
| Open-source Models          |              |             |                        |               |               |
| InternVL2-2B [ <u>101</u> ] | 24.9         | 22.0        | 35.0                   | 33.8          | 44.2          |
| InternVL2-8B [ <u>101</u> ] | 28.7         | 48.2        | 39.8                   | 36.7          | 30.7          |
| InternVL2-40B [101]         | 26.9         | 46.5        | 31.8                   | 42.1          | 32.2          |
| LongVILA-8B [102]           | 9.1          | 16.7        | 0.0                    | 29.6          | 30.7          |
| VILA-1.5-8B [103]           | 21.8         | 50.3        | 18.8                   | 32.1          | 34.8          |
| VILA-1.5-40B [103]          | 24.8         | 48.7        | 22.7                   | 40.5          | 25.7          |
| LongVA-7B [104]             | 16.6         | 38.9        | 22.2                   | 33.1          | 43.3          |
| LLaVA-NeXT-Video-7B[71]     | 14.0         | 47.8        | 24.2                   | 43.5          | 42.4          |
| LLaVA-NeXT-Video-72B [71]   | 22.8         | 57.4        | 35.3                   | 42.4          | 36.7          |
| LLaVA-OneVision-0.5B [105]  | 28.4         | 15.4        | 28.3                   | 28.9          | 36.9          |
| LLaVA-OneVision-7B [105]    | 20.2         | 47.4        | 12.3                   | 42.5          | 35.2          |
| LLaVA-OneVision-72B [105]   | 23.9         | 57.6        | 37.5                   | 42.5          | 39.9          |
| SR-3D-8B                    | 52.8         | 75.5        | 41.9                   | 57.3          | 82.3          |

Results on VSI-Bench

### RynnEC: Bringing MLLMs into Embodied World

#### Model

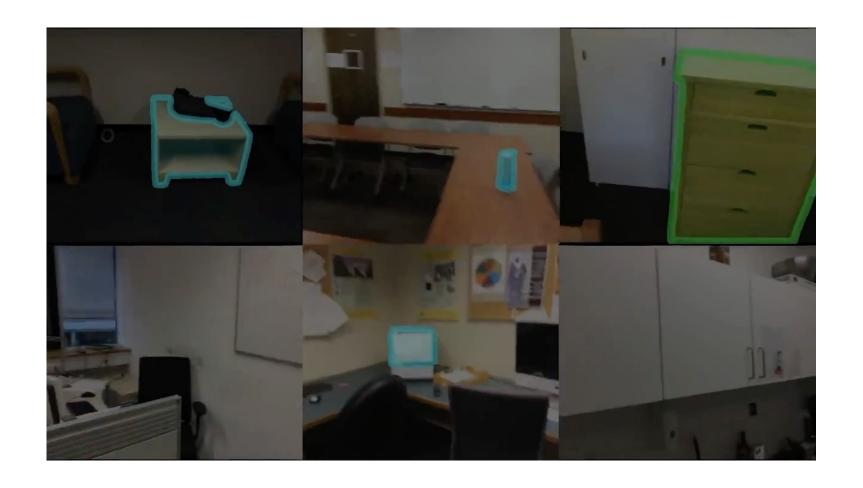




- Based on VideoLLaMA3
- Mask Encoder for object-text alignment
- Mask Decoder for grounding and segmentation (SAM2)

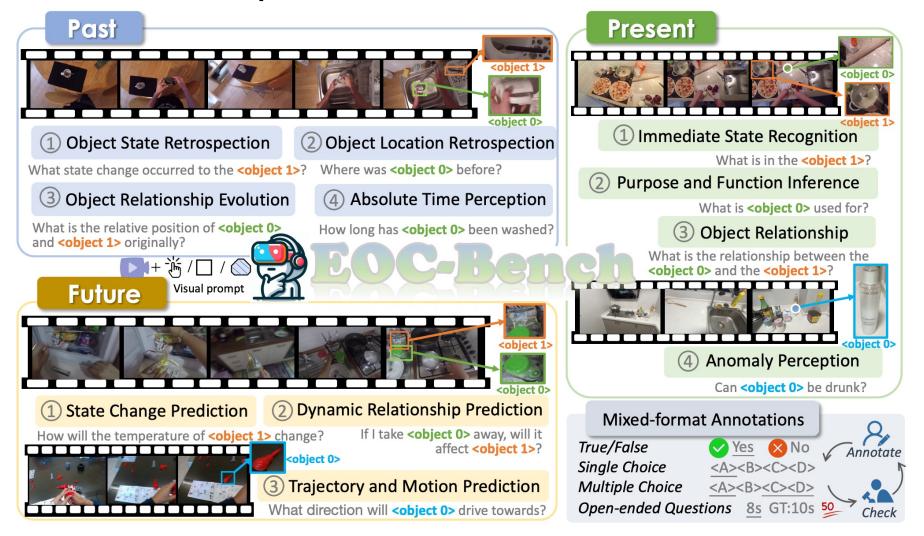
**DAMO** Academy

### Fine-grained Spatiotemporal Understanding in Embodied Recognition



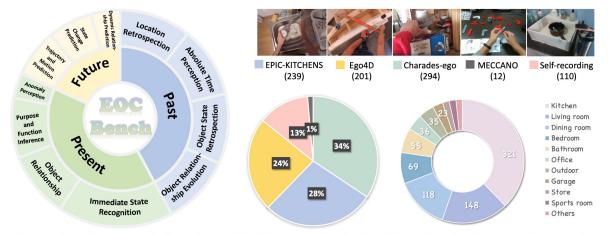
### Fine-grained Spatiotemporal Understanding in Dynamic Embodied World?

Temporal dimensions: Past, Present and Future



EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World? NeurIPS2025 Accept (DB Track)

### Fine-grained Spatiotemporal Understanding in Dynamic Embodied World?



(a) Overview of EOC-Bench dimensions (b) Video source distribution (c) Number of various scenario categories



EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World? NeurIPS2025 Accept (DB Track)

### Fine-grained Spatiotemporal Understanding in Dynamic Embodied World?

| 9  | indicate the to                                    | p-3 mo   | deis. I | ne bes | st resu | its are | nigniig | gnted i | n <u>bola</u> | and u  | naeriir        | iea.    |        |        |        |       |       |
|----|----------------------------------------------------|----------|---------|--------|---------|---------|---------|---------|---------------|--------|----------------|---------|--------|--------|--------|-------|-------|
|    | <mark>nge</mark> : Proprietary N<br>ndation Models | /lultimo | odal Fo | undati | ion Mo  | dels    | Purple  | : Obje  | ct-leve       | l MLLN | /ls <b>O</b> t | hers: ( | Open-S | ource  | Multin | nodal |       |
| #  | Method                                             | Input    | Mean    |        |         | Past    |         | Present |               |        |                |         |        | Future |        |       |       |
|    |                                                    |          |         | OSR    | OLR     | ORE     | ATP     | Mean    | ISR           | OR     | PFI            | AP      | Mean   | TMP    | SCP    | DRP   | Mean  |
| 1  | GPT-4o 🥇                                           | 32f      | 61.83   | 66.04  | 71.93   | 46.56   | 34.46   | 54.91   | 71.46         | 52.85  | 78.18          | 62.75   | 67.32  | 69.61  | 68.69  | 68.97 | 69.11 |
| 2  | Gemini-2.0-flash 🖔                                 | 32f      | 57.38   | 63.46  | 65.10   | 32.56   | 28.60   | 47.87   | 68.84         | 57.52  | 69.68          | 65.69   | 65.95  | 58.54  | 64.02  | 57.95 | 60.75 |
| 3  | InternVL2.5-78B 🎳                                  | 32f      | 52.33   | 53.46  | 63.96   | 33.15   | 12.01   | 41.35   | 66.67         | 50.74  | 67.10          | 52.94   | 61.72  | 67.80  | 50.47  | 54.55 | 58.19 |
| 4  | InternVL2.5-38B                                    | 32f      | 52.31   | 55.40  | 59.62   | 30.92   | 10.89   | 39.89   | 64.15         | 54.28  | 71.29          | 64.71   | 63.35  | 60.98  | 54.67  | 57.95 | 57.79 |
| 5  | Qwen2.5-VL-72B                                     | 1fps     | 49.87   | 51.25  | 51.22   | 40.11   | 8.48    | 38.41   | 61.31         | 47.79  | 67.10          | 57.84   | 58.98  | 56.10  | 60.65  | 54.55 | 57.76 |
| 6  | LLaVA-Video-72B                                    | 32f      | 49.59   | 49.03  | 56.91   | 26.74   | 24.02   | 39.59   | 63.32         | 47.20  | 63.87          | 50.00   | 58.38  | 56.10  | 55.14  | 47.73 | 54.24 |
| 7  | GPT-4o-mini                                        | 32f      | 49.47   | 53.26  | 52.35   | 29.68   | 21.10   | 39.47   | 58.46         | 49.26  | 67.74          | 58.82   | 58.31  | 56.59  | 50.00  | 54.55 | 53.45 |
| 8  | LLaVA-OV-72B                                       | 32f      | 47.88   | 46.81  | 50.95   | 26.46   | 12.91   | 34.81   | 64.15         | 51.33  | 64.52          | 49.02   | 59.87  | 58.05  | 46.73  | 54.55 | 52.66 |
| 9  | VideoLLaMA3-7B                                     | 1fps     | 46.04   | 45.15  | 52.85   | 24.51   | 15.54   | 35.00   | 57.96         | 48.67  | 62.58          | 49.02   | 56.01  | 52.20  | 49.54  | 48.86 | 50.49 |
| 10 | InternVL2.5-8B                                     | 32f      | 45.15   | 45.71  | 54.47   | 39.00   | 9.76    | 37.87   | 55.44         | 48.97  | 54.84          | 41.18   | 52.60  | 49.76  | 38.79  | 53.41 | 45.76 |
| 11 | Qwen2.5-VL-7B                                      | 1fps     | 43.13   | 47.37  | 46.34   | 21.45   | 8.18    | 31.38   | 57.29         | 44.54  | 59.35          | 49.02   | 53.93  | 48.78  | 46.30  | 46.59 | 47.35 |
| 12 | LLaVA-Video-7B                                     | 32f      | 41.82   | 44.32  | 48.51   | 22.56   | 9.76    | 31.82   | 54.27         | 43.66  | 55.81          | 49.02   | 51.56  | 45.85  | 40.65  | 47.73 | 43.98 |
| 13 | VideoLLaMA2-72B                                    | 16f      | 41.55   | 43.77  | 51.22   | 24.23   | 6.46    | 32.03   | 50.08         | 37.46  | 58.06          | 45.10   | 48.37  | 49.27  | 50.47  | 51.14 | 50.10 |
| 14 | LLaVA-OV-7B                                        | 32f      | 40.46   | 40.72  | 45.53   | 22.84   | 9.53    | 30.15   | 54.10         | 43.07  | 52.58          | 46.08   | 50.37  | 47.32  | 37.38  | 46.59 | 43.00 |
| 15 | VideoRefer-7B                                      | 16f      | 40.44   | 47.37  | 55.01   | 23.40   | 10.59   | 34.69   | 48.91         | 39.82  | 53.55          | 38.24   | 46.88  | 41.95  | 35.51  | 43.18 | 39.45 |
| 16 | VideoLLaMA3-2B                                     | 1fps     | 38.41   | 37.12  | 46.88   | 21.17   | 11.26   | 29.57   | 49.92         | 43.36  | 48.39          | 38.24   | 47.03  | 43.41  | 36.11  | 43.18 | 40.28 |
| 17 | Qwen2.5-VL-3B                                      | 1fps     | 38.17   | 38.78  | 48.78   | 23.96   | 7.66    | 30.34   | 49.92         | 38.94  | 45.16          | 38.24   | 45.18  | 42.93  | 36.57  | 50.00 | 41.45 |
| 18 | VideoLLaMA2.1-7B                                   | 16f      | 37.74   | 44.88  | 42.82   | 19.22   | 11.64   | 30.08   | 47.24         | 37.17  | 51.94          | 39.22   | 45.18  | 40.00  | 36.92  | 44.32 | 39.45 |
| 19 | NVILA-8B                                           | 32f      | 37.69   | 37.40  | 46.61   | 20.89   | 12.09   | 29.69   | 44.39         | 41.59  | 49.03          | 46.08   | 44.88  | 42.44  | 38.32  | 44.32 | 41.03 |
|    |                                                    |          |         |        | 43.36   | 17.83   | 15.32   | 28.69   | 38.19         | 36.58  | 48.06          | 42.16   | 40.36  | 39.02  | 42.06  | 40.91 | 40.63 |

EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World? NeurIPS2025 Accept (DB Track)









# Thanks!

https://cslwt.github.io/

wentong\_li@nuaa.edu.cn