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Fine-grained Object/Region Understanding  

Osprey: Pixel Understanding with Visual Instruction Tuning, in CVPR 2024. 2023.9-2023.11

Osprey

Out-of-domain Scene

• Integrate images, target regions (masks), and textural data;

• Enable fine-grained semantic description of arbitrary regions 

or objects within images;

• Strong robustness and generalization.

General scene



Fine-grained Object/Region Understanding  

• 720K region-text pairs.

• Six types of  object region-text data.• Pixel-level region feature extraction  
- Mask-Aware visual extractor (multi-level)

• Support high-resolution image
- ConvNeXt (512x521@training, 800x800@inference)

Open-source: https://huggingface.co/sunshine-lwt

[1] ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models, arXiv:2405.15738.
[2] Mini-gemini: Mining the potential of multi-modality vision language models, arXiv:2403.18814.

Tsinghua Uni.
CUHK

https://huggingface.co/sunshine-lwt
https://huggingface.co/sunshine-lwt
https://huggingface.co/sunshine-lwt


Fine-grained Object/Region Understanding  
Online Demo

Video Visualization



Fine-grained Object/Region Understanding  
Spatial RGPT

SpatialRGPT: Grounded Spatial Reasoning in Vision-Language Models, in NeurIPS2024. UCSD&NVIDA

• Relative Relation

• Metric Measurement

• Spatial Reasoning

Accurate Spatial 
Understanding & 
Reasoning on Objects 
in Image.
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SpatialRGPT: Grounded Spatial Reasoning in Vision-Language Models, in NeurIPS2024. UCSD&NVIDA

3D scene  graph construction from Single 2D image

• Open-Voc. Detection &Segmentation: 
Tagging model, Grounding DINO,SAM-HQ

• Metric Depth Estimation: 
Metric3Dv2

• Camera Calibration: 
WildCamera: camera intrinsic

     PerspectiveFields: camera extrinsics

• 3D Scene Graph Construction
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SpatialRGPT: Grounded Spatial Reasoning in Vision-Language Models, in NeurIPS2024. UCSD&NVIDA

Framework
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Video object 
Referring
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Video Object Referring

A man with a cocked hat 
and green robes, riding a 
horse, slowly riding from 
the left to the right.

Video Objects Relationship

The knife <object1> 
moves the spring 
onions from the 
chopping board 
<object2> to the pan.

Future Reasoning
Q: What will <object1> 
probably do next?

A: <object1> will probably 
have to shoot or pass the 
ball to a teammate.

Video Object Retrieval
Input image

The man was Trump, 
who stood in the 
crowd waving and 
waving his fist to the 
left and right.

VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025. 2024.6-2024.11



Fine-grained Object/Region Understanding  

• Spatiotemporal Region-level understanding Architecture;

• Constructing Large-scale Video Region Dataset;

• Evaluation Benchmarks for Video-based Object Understanding.

VideoRefer-700K—Multi-agent Data Engine

VideoRefer-Bench

VideoRefer Suite

VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025. 2024.6-2024.11

VideoRefer Model
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VideoRefer
Model

A plug-and-play Spatial-Temporal Object Encoder:

• Spatial Token Extractor (Single-frame)

• Temporal Token Merge Module (Multi-frame)

• Free-from input region (Mask)

Base Model: VideoLLaMA2

VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025. 2024.6-2024.11

Optimization Loss:
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VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025. 2024.6-2024.11

VideoRefer Model

Compute the cosine similarity between each pair of adjacent tokens:
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Multi-agent Data Engine

VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025. 2024.6-2024.11

VideoRefer-700K

Three types:
     - Object-level Detailed Caption
     - Object-level Short Capton
     - Object-level QA

Step1- Analyzer: Qwen2-Instruct-7B
Step2-Annotator: InternVL2-26B
Step3-Segmentor:Grounding DINO&SAM 2
Step4-Reviewer: Osprey&Qwen2-Instruct-7B 
Step5-Refiner:GPT-4o
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VideoRefer-BenchD  (Descripion Generation)
    GPT assign scores from 0 to 5 across:
• Subject Correspondence 
• Appearance Description
• Temporal Description
• Hallucination Detection

VideoRefer-BenchQ (Multi-choice QA)
• Basic Questions
• Sequential Questions
• Relationship Questions
• Reasoning Questions
• Future Predictions

VideoRefer-Bench

VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025. 2024.6-2024.11
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Experiments

VideoRefer Suite: Advancing spatial-temporal object understanding with video LLM, in CVPR 2025. 2024.6-2024.11
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Adopting VideoRefer-Bench & Osprey Evaluation.

Describe Anything: Detailed Localized Image and Video Captioning, in ICCV 2025. NVIDIA&UC Berkely

Typical two regional frameworks

Describe Anything Model（DAM）
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Describe Anything: Detailed localized image and video captioning [C], in ICCV 2025.

• Focal Prompt

    Full image and a zoomed-in region with corresponding mask 

• Localized Vision Backbone

   Inject global features into the encoding of local regions using 

Gated Cross-Attention Adaptor

NVIDIA&UC Berkely

DAM



Fine-grained Object/Region Understanding  
• Simple Extension to Video Frames

- All frames are naïvely concatenated along the temporal axis, without considering 
inter-frame correlations; 
- Each object per frame is represented by 196 tokens;
- Limited to captioning tasks only.

• Using LLM as Judge for Performance Evaluation & Dataset

Describe Anything: Detailed localized image and video captioning [C], in ICCV 2025. NVIDIA&UC Berkely
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Describe Anything: Detailed localized image and video captioning [C], in ICCV 2025. NVIDIA&UC Berkely

Experiments
The Evaluation setting of Osprey

VideoRefer-Bench  
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Perceive Anything: Recognize, Explain, Caption, and Segment Anything in Images and Videos, arXiv:2506.05302.
CUHK & HK PloyU

• Extends SAM 2 by extracting its  intermediate visual features 
and transforming them into LLM-compatible tokens.

• Enables segmentation mask decoding and semantic content 
decoding simultaneously.

Perceive Anything Model（PAM）
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Segment and Caption Anything, in CVPR2024.

SCA Model

Semantic PerceiverS2-FFM 64x64 × N visual tokens & Ns × N semantic tokens
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Perceive Anything: Recognize, Explain, Caption, and Segment Anything in Images and Videos, arXiv:2506.05302.

A Large-Scale, Multi-Granular Region-Text Dataset

Image Data: 
1.5M image region-text pairs

Video Data:
- Storyboard-based expansion
- Event-aware segmentation
600K video region-text pairs

Supporting both English and Chinese.
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Perceive Anything: Recognize, Explain, Caption, and Segment Anything in Images and Videos, arXiv:2506.05302.

• Fixed window size without long-term memory;
• Limited to object captioning without multi-round, multi-object interaction.

Streaming Object Caption

Limitations：



1. Fine-grained Object/Region Understanding

    Image/Video

2. Efficient VLMs with Visual Token Compression

    Model-driven：TokenPacker,  FastV, VisionZip, VisionTrim & LongVU 

    Data-driven：VocoLLAMA, Video-XL & DTR

Other Paradigm:  mPLUG-Owl3, Lavi

3. Streaming Understanding & Interaction for AI Assistant

  Training/Training-free

Content



LLM dominates the main computational 
and memory demands.

Reducing the number of visual tokens is a 
pivotal approach to bolster the efficiency.

Vision
Encoder

Projector Large Language Model

Visual Tokens Text Tokens

Ouput

• Vision Encoder

• CLIP-VIT-L： ~0.3B

• Large Language Model

• LLaMA/Vicuna: 7B/13B

• Visual Projector

• MLP： 336x336 input -> 576 tokens

Efficient VLMs with Visual Token Compression  

2024.2-2024.6Tokenpacker: Efficient visual projector for multimodal LLM [J], IJCV 2025. 



Linear Projector
• One-to-one transformation

• 336x336 ->576token

• Retaining the detailed information 

with redundant tokens

Pixel shuffle

• Token reduction:144

• Nearby concatenation

• Destroying intrinsic characteristics 

Resampler/Q-Former

• Learnable queries（64/144）

• Extracting the most relevant visual 

tokens, ignoring other objects.

Abstracter
• Local interaction

• Convolution layers

• Omitting fine detailed information 

[1] Improved baselines with visual instruction tuning, in NeurIPS2024
[2] Qwen-vl: A frontier large vision-language model with versatile abilities, Arxiv 2023
[3] How far are we to gpt-4v? closing the gap to commercial multimodal models with open-source suites, Arxiv 2024 
[4] Honeybee: Locality-enhanced projector for multimodal llm, in CVPR2024

Efficient VLMs with Visual Token Compression  



TokenPacker

• Coarse-to-fine

Down-sampling features as coarse foundation

• Point to Region Attention, injecting the finer 

region feature to point query

• Multi-level visual features: 12-16-22-33

• Scale factor：S ∈ {2,3,4} to control the 

reduction rate  {4, 9, 16}, even less.

Efficient VLMs with Visual Token Compression  

2024.2-2024.6Tokenpacker: Efficient visual projector for multimodal LLM [J], IJCV 2025. 



Comparisons with same setting

• TPS: token per second 

• Evaluation on a NVIDIA A100 GPU

LLaVA-1.5 as the baseline 

Exhibit a more favorable superiority on accuracy and efficient against other counterparts.

1/9 of the original results in a 5.5× acceleration, while 
maintaining comparable performance.

2024.2-2024.6Tokenpacker: Efficient visual projector for multimodal LLM [J], IJCV 2025. 

Efficient VLMs with Visual Token Compression  
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High-resolution  Framework（TokenPacker-HD）

Mini-gemini: Mining the potential of multi-modality vision language models, arXiv:2403.18814.

TokenPacker-HD

Adopt the same training data Mini-Gemini[1]

Employing Osprey on TokenPakcer-HD framework
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An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models, ECCV2024.

FastV
Training-free

（Within LLM Decoding）

PKU

Total attention score of current token: Attention Allocation:



Efficient VLMs with Visual Token Compression  Training-free

An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models, ECCV2024.
Efficient Streaming Language Models with Attention Sinks, Arxiv 2309.17453

PKU
MIT, Meta & CMU

FastV
（Within LLM Decoding）
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An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models, ECCV2024.

Training-free

FastV
（Within

     LLM Decoding）
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An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-language models, ECCV2024.

Training-free

Comparisons with same setting
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Visionzip: Longer is better but not necessary in vision language models, in CVPR2025.

Training-free

CUHK & HKUST

VisionZip
（Within Visual Encoding）



Efficient VLMs with Visual Token Compression  Training-free

Dominant Token Selection

• Using [CLS] Tokens attention scores to identify key visual 
tokens (CLIP)

• Average attention each token receives from all others (SigLIP）

Visionzip: Longer is better but not necessary in vision language models, in CVPR2025.



Efficient VLMs with Visual Token Compression  Training-free

Contextual Tokens Merging

• Merge the remaining tokens to avoid losing 

any small but potentially important 

information.

Visionzip: Longer is better but not necessary in vision language models, in CVPR2025.
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Visionzip: Longer is better but not necessary in vision language models, in CVPR2025.

Fine-tuning visual projector; other frozen 

Experiments



Efficient VLMs with Visual Token Compression  

VoCo-LLaMA: Towards Vision Compression with Large Language Models, in CVPR2025.

Data-Driven Method

Tsinghua  Uni. & Tencent

VoCo-LLaMA

This work introduces a
learnable Vision Compression 

(VoCo) token between visual 
and text tokens.

Learning to Compress Prompts with Gist Tokens, in NeurIPS2023. Stanford University
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Ye et al., VoCo-LLaMA: Towards Vision Compression with Large Language Models, in CVPR2025.

Data-Driven Method

Modifying the attention mechanism, text 
tokens attend solely to VoCo tokens:

Distillation objective:

576× compression rate  while maintaining 
83.7% performance.

VoCo-LLaMA



Efficient VLMs with Visual Token Compression  Model-driven 
Video method

LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding, in ICML2025. 

LongVU

Meta & KAUST

Step1: Temporal Reduction: DINOv2 Step2: Selective Feature Reduction via Cross-modal Query

Step3: Spatial Token Compression (STC): pixel-level
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Video-XL: Extra-Long Vision Language Model for Hour-Scale Video Understanding, in CVPR2025.

Data-Driven 
Video Method

SJTU

VideoXL
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mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models, in ICLR2025.
Alibaba Tongyi

mPLUG-Owl3: Only input text token and fuse visual tokens within attention block
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mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models, in ICLR2025. Alibaba Tongyi

Efficiency Comparisons

Performance Comparisons

Other paradigm
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LaVi: Efficient Large Vision-Language Models via Internal Feature Modulation, arXiv:2506.16691.

LaVi

IACAS

Comparison with 
Current methods

LaVi Framework
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Feature Modulation Injection

Core insight: Vision-Infused Layer Normalization

α and β are learnable affine parametersStandard LN:

ViLN:

Δα_v and Δβ_v are vision-conditioned deltas generated from visual input v.

One before self-attention and One before FFN:

Three Types of Conditioning Modules:

LaVi: Efficient Large Vision-Language Models via Internal Feature Modulation, arXiv:2506.16691. IACAS
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Efficiency ComparisonsPerformance Comparisons

Yue et al., LaVi: Efficient Large Vision-Language Models via Internal Feature Modulation, arXiv:2506.16691. （NOT Open-soured）

IACAS

Without comparison with mPLUG-Owl3
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Slow-Fast Architecture for Video Multi-Modal Large Language Models, arXiv:2504.01328.

Other paradigm
Video method

SHI Labs &NVIDIA

Slow-fast MLLLM

Comparison with Current method

Framework



Conclusion and Future direction

• Model-driven Approaches

Numerous recent studies have emerged, though the potential for further improvement is becoming limited—

particularly for image-based VLMs.

• Other Paradigms 

Develop more effective Vision-Infused Modules;

Research in this area remains limited, especially for Video-LLMs. 

• Data-driven Approaches
Demonstrate significant advantages when dealing with extremely fewer visual tokens;

Develop large-scale token ranking datasets;

Propose methods with strong generalization capabilities.

Efficient VLMs with Visual Token Compression  
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